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Robotic rehabilitation

• Rehabilitation aims at improving quality of life after trauma/disease

• Current trend is to mimic ’normal’ motion [D́ıaz et al.]

• Without significant results [Kwakkel et al.]

• Newest paradigm: Patient chooses trajectories, physiotherapist/robots assists

[Hidler and Sainburg; Lum et al.]

• Goal of BETER REHAB project: assist patient along intended trajectory using a

robotic arm
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Rehabilitation::Methodologies

Traditional

+ Personalized

+ Targeted

− Lengthy procedures

− Harmful for

physiotherapists

Exoskeletons

+ Robot and human same

joint space

− Expensive to develop

− Lengthy procedures

End-effectors

+ Easier to develop

+ Easy attachment to

patients

− Not so flexible

Collaborative robotic arms

+ Low development costs

+ Fast rehabilitation cycles

− More complicated controller

− Knowledge of intention is necessary
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Intention of motion

Several intention models available in literature:

• EMG based Liu et al.; Aung and Al-Jumaily; Kwon and Kim

• EEG based Zhou et al.; Yousefizadeh et al.

• EMG and kinematics Natsakis and Busoniu

However they are all person specific, which is limiting in some cases, e.g. for robotic

rehabilitation

4



Intention of motion

Several intention models available in literature:

• EMG based Liu et al.; Aung and Al-Jumaily; Kwon and Kim

• EEG based Zhou et al.; Yousefizadeh et al.

• EMG and kinematics Natsakis and Busoniu

However they are all person specific, which is limiting in some cases, e.g. for robotic

rehabilitation

4



Robotic rehabilitation::Intention of motion

EMG can help us predict the intention of a person - kinematics

The robot can then assist accordingly

We might not be able to have pre-recorded kinematics of a patient
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Intention of motion::Measurements
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Intention of motion::Measurements

• Shoulder Abduction

• Shoulder Flexion

• Shoulder Rotation

• Elbow Flexion
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Intention of motion::Measurements

• 5 volunteers (4 male, 1 female)

• 3 types of motion

(Arm raise, Arm cross, Elbow flexion)

• 10 repetitions

• 3 trials

• LSTM network
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Intention of motion::LSTM network structure

(6+4) * 10 = 100 inputs

(EMG + kinematics)

20 - 150 - 20 nodes

on 3 hidden layers

4*n outputs (kinematics)

(n: prediction steps)
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Intention of motion::Subject specific prediction

RMSE as a metric for accuracy

Prior measurements are necessary (person specific model)

10



Intention of motion::Subject specific prediction

RMSE as a metric for accuracy

Prior measurements are necessary (person specific model)

10



Intention of motion::Subject specific prediction

RMSE as a metric for accuracy

Prior measurements are necessary (person specific model)
10



Intention of motion::Generic Prediction

Leave-one-out training
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Intention of motion::Generic Prediction

Leave-one-out training
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Intention of motion::Sensitivity analysis
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Discussion

• Prediction is realistic and real-time

• No prior measurement of the subject is needed for prediction

• Accuracy increases with more subjects

• Predicted intention more accurate than pre-defined trajectories

13



Discussion

• Prediction is realistic and real-time

• No prior measurement of the subject is needed for prediction

• Accuracy increases with more subjects

• Predicted intention more accurate than pre-defined trajectories

13



Discussion

• Prediction is realistic and real-time

• No prior measurement of the subject is needed for prediction

• Accuracy increases with more subjects

• Predicted intention more accurate than pre-defined trajectories

13



Discussion

• Prediction is realistic and real-time

• No prior measurement of the subject is needed for prediction

• Accuracy increases with more subjects

• Predicted intention more accurate than pre-defined trajectories

13



Acknowledgment

This work was supported by a grant of Ministry of Research and Innovation, CNCS -

UEFISCDI, project number PN-III-P1.1-TE-2019-1975, within PNCDI III.

14



Questions?

tassos.natsakis@aut.utcluj.ro
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