
Forward kinematics
From joints to kinematics
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Agenda

• Quantifying human motion
• Coordinate frames
• Transformation matrices
• From frame to frame
• Forward kinematics model
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Human motion

Pose
Description of position and orientation of segments, with respect
to a reference frame

We use coordinate frames
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Coordinate systems
Cartesian coordinates

In simple words
A coordinate system is a mathematical tool that allows us to
describe the position of objects in space using numbers. Each
coordinate system has axes, equal in number to the number of
dimensions of space.

Properties
• The axes must be perpendicular to each other
• The length of the axes is one unit
• Each point has n number of coordinates, equal to the number
of axes

• There can be more than one coordinate system to describe a
certain space
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Coordinate systems
The R3 case

In three dimensional
space (3D), we need
three axes to describe
the position of each
point. Each of these
axes must be
perpendicular to the
other two.
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Points
Description of points

Since we might have different coordinate frames defined, we need
to define the notation to describe the potision of a point P in
respect to a coordinate frame

For a point P
described in coordinate
frame O, we will use
the following notation
to describe its position

PO =

Px

Py

Pz


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Vectors
Description of vectors

Vectors are just like points!

A vector V described
in coordinate frame O,
is totally defined by its
end point P and we
use the same notation
as points

VO =

Px

Py

Pz


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Vectors
Description of vectors

When we have multiple vectors, we can group them together

VO =
[
V1 V2

]
=

P1x P2x
P1y P2y
P1z P2z


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Coordinate frames
Description of coordinate frames

A coordinate system (a.k.a coordinate frame) is a set of three
vectors. Therefore, we can describe it in respect to another
coordinate frame using the notation we know

VO =
[
V1 V2 V3

]
=P1x P2x P3x

P1y P2y P3y
P1z P2z P3z


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Coordinate frames
Description of coordinate frames

In the special case, when the axes of the two coordinate frames
are aligned, we end up with....

VO =
[
V1 V2 V3

]
=1 0 0

0 1 0
0 0 1


The identity matrix!
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Transformations
A nice trick to move things around

Since we talk about motion, we need to define a way to move
things around. To do this, we use matrices.
Definition of transformation matrix R for a counter-clockwise
rotation θ in R2:

R =
[
cosθ −sinθ
sinθ cosθ

]
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Transformations
A nice trick to move things around

Let’s put this in practice. Suppose we have a point PO =
[
Px

Py

]
,

and we want to rotate it by θ degrees. All we need to do is to
multiply the transformation matrix R with the point PO. The
result of the multiplication is the transformed point P

′
O

P
′
O = R ∗ PO
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Transformations
Example

Suppose we have a point PO =
[
1
2

]
and we want to rotate it

around the origin of the axes by θ = 90◦:

P
′
O = R ∗ PO =

[
cosθ −sinθ
sinθ cosθ

]
∗

[
Px

Py

]

=
[
cos90 −sin90
sin90 cos90

]
∗

[
1
2

]

=
[
0 −1
1 0

]
∗

[
1
2

]
=

[
−2
1

]
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Transformations
Example

P
′
O = R ∗ PO =

[
0 −1
1 0

]
∗

[
1
2

]
=

[
−2
1

]
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Transformations
It works with more points too!

P
′
O = R ∗ PO =

[
0 −1
1 0

]
∗

[
1 2
2 1

]
=

[
−2 −1
1 2

]
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Transformations
Let’s do it in 3D

Transformations in R3 follow the same logic. There are three
rotations that can be applied in three dimensions, each around
one of the three axes. Rotation around axis:

R(x, θ) =1 0 0
0 cosθ −sinθ
0 sinθ cosθ


R(y, φ) = cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


R(z, ω) =cosω −sinω 0
sinω cosω 0

0 0 1


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Transformations
Let’s do it in 3D
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Transformations
What about translation?

The second type of basic transformation is the translation. How
do we ’apply’ translations to a point?

Homogenious transformation matrix:

T =

 3 × 3 3 × 1

1 × 3 1 × 1

 =


trans−

rotation la−
tion

0 0 0 1

 (1)
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Transformations
Homogenious translations

Trans(X, a) =


1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1



Trans(Y, b) =


1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1



Trans(Z, c) =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1


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Transformations
Homogenious rotations

Rot(X, θ) =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1



Rot(Y, φ) =


cosφ 0 sinφ 0

0 1 0 0
−sinφ 0 cosφ 0

0 0 0 1



Rot(Z, ω) =


cosω −sinω 0 0
sinω cosω 0 0

0 0 1 0
0 0 0 1


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Transformations
Transforming Coordinate Frames

As we already saw, we use a matrix notation to express a
coordinate frame relative to another. A coordinate frame aligned
with a basis coordinate frame is expressed with the identity
matrix.

VO =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Transformations
Transforming Coordinate Frames

We can transform the coordinate frame by multiplying its matrix
representation with transformation matrices corresponding to the
transformation we want.

V
′

O = Rot(X, θ) ∗ VO
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Transformations
Transforming Coordinate Frames

We can apply multiple transformations by multiplying the
resulting coordinate frame with a second transformation matrix.

V
′

O = Rot(Y, φ) ∗ Rot(X, θ) ∗ VO

Arbitrary position
The transition between two arbitrarily positioned coordinate
frames can always be described in terms of elementary
transformations (rotations and translations)
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Transformations
Transforming Coordinate Frames
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Transformations
Transforming Coordinate Frames

Arbitrary position
The transition between two arbitrarily positioned coordinate
frames can always be described in terms of elementary
transformations (rotations and translations)
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Links

A link is a rigid part of a mechanism. In our case, we consider
bones as links
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Joints
A revolute joint is a joint that allows motion that changes the
orientation of a segment by rotating around a fixed axis. We
usually work with one degrees of freedom joints (e.g. hinge).

If we have a more complex joint (i.e. spherical), then we model it
as subsequent hinge joints.
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Forward kinematics
Definition

The Forward kinematics (FK) is a mathematical tool that allows
us to calculate the position and orientation (pose) of a body’s
point of interest if we know the state of the joints and the
lengths of the links.

In simple words
How do I calculate the pose of the human arm if I know the joint
angles?
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Forward kinematics
Definition

2

3

1

How do we calculate the pose of the end-effector of this arm?
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Forward kinematics
Definition

We describe the pose of the end-effector using a 4x4
transformation matrix (contains information about position and
orientation).

T =

 3 × 3 3 × 1

1 × 3 1 × 1

 =


trans−

rotation la−
tion

0 0 0 1

 (2)
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Forward kinematics
Calculation

To define the FK we perform the following steps:

• We identify the links and joints of the arm.
• We attach a fixed coordinate frame in a convenient location.
• We attach a coordinate frame on each link at their joints.
• We calculate the transformation between each subsequent
coordinate frame.

• We combine the transformations to calculate the overall
transformation from base to end-effector.
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Forward kinematics
Calculation
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Forward kinematics
Static calculation

R1
0 = Trans(Z, 1) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1



R2
1 = Trans(Z, 2) =


1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1


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Forward kinematics
Static calculation

R3
2 = Trans(Y, 3) =


1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

 R4
3 =


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1


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Forward kinematics
Static calculation

R4
0 = R1

0 ∗ R2
1 ∗ R3

2 ∗ R4
3 =


1 0 0 0
0 1 0 3
0 0 1 2
0 0 0 1


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Forward kinematics
Static calculation

R4
0 =


1 0 0 0
0 1 0 3
0 0 1 2
0 0 0 1

 =


trans−

rotation la−
tion

0 0 0 1



Rn
m =


Xx Yx Zx Px

Xy Yy Zy Py

Xz Yz Zz Pz

0 0 0 1


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Forward kinematics
What about other configurations?

θ1

l1

l2
θ2

l3
θ3
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Forward kinematics
Dynamic Calculation
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Forward kinematics
Dynamic calculation

R1
0 = Trans(Z, 1) ∗ R(X, θ1) =
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 *


1 0 0 0
0 c1 −s1 0
0 s1 c1 0
0 0 0 1



R2
1 = Trans(Y, l1) ∗ R(X, θ2) =
1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1

 *


1 0 0 0
0 c2 −s2 0
0 s2 c2 0
0 0 0 1


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Forward kinematics
Dynamic calculation

R3
2 = Trans(Y, l2) ∗ R(X, θ3) =
1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1

 *


1 0 0 0
0 c3 −s3 0
0 s3 c3 0
0 0 0 1



R4
3 =


1 0 0 0
0 1 0 l3
0 0 1 0
0 0 0 1



R4
0 = R1

0 ∗ R2
1 ∗ R3

2 ∗ R4
3
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Forward kinematics
Dynamic calculation

R4
3 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1


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Forward kinematics
Dynamic calculation

R4
0 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1


Forward kinematics
The FK is a transformation matrix, a function of the joint
positions and link lengths. If we know these variables, we can
calculate the position and orientation of the end effector (or any
other point).
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Forward kinematics
Spherical joints

How do we calculate the forward kinematics of a spherical joint?
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Questions?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 44/44
44/44


