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Bone morphology
Types of bones
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Bone morphology
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Bone morphology

Bone is a living tissue
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https://www.youtube.com/watch?v=0dV1Bwe2v6c
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https://www.youtube.com/watch?v=0dV1Bwe2v6c

Bone morphology

Bone structure

& =——— Articular cartilage
— )
epiphysis
Metaphysis - Spongy bone
Epiphyseal line
Red bone marrow
Endosteum
Compact bone
Medullary cavity
Diphysis —| Yellow bone marrow
Periosteum
Nutrient artery
Metaphysis —
Distal
epiphysis
Articular cartilage

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics



Composition of long bones
Compact Bone & Spoengy (Cancellous Bone)

Lacunae containing osteocytes

Lamellag

Canaliculi

Dsteon of compact bone

Trabeculae of Spongy
hone

: . : | i
Osteon BN oaal == Haversian

Periosteumn
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Composition of long bones

Compact Bone & Spongy {Cancellous Bone)

Lacunae containing osteocytes Osteon of compact hone

Lamellae Trabeculze of Spongy

Canaliculi bone
Ostean g =0 g@npdl ol s Haversian
5 : g canal

Periosteumn

Basic structure is the osteon
6
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Composition of long bones

Osteons

e = Oy
Osteons are like tree trunks
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Bone morphology

Types of bone structure

e M\r‘ .

Introduction to Bone Biology 1:

200 Ine. All Fights Rese
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https://www.youtube.com/watch?v=inqWoakkiTc

Bone morphology

Types of bone structure

¥ W
G

Introductlon to Bone Brology

https://www.youtube.com/watch?v=ingWoakkiTc
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https://www.youtube.com/watch?v=inqWoakkiTc

Composition of long bones
Fluids

Compact Bone & Spongy {Cancellous Bone)

Lacunae containing osteocytes Osteon of compact hone

Lamellag

Trabeculae of spongy

Canaliculi bone
Osteon = Hawersian
canal

Periosteumn

Yolkmann's canal

In the porosity of the bone, there is fluid and bone marrow.
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Bone properties

Bone models

At what level do we model our bones?
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Bone properties

Bone models

At what level do we model our bones?
It depends on what we want to study

von Mises Stress (MPa)

[

Verbruggen et. al
2016

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Modelling in Biomechanics



Bone properties

Bone models

At what level do we model our bones?
It depends on what we want to study

von Mises Stress (MPa)

[

Verbruggen et. al Torres et. al 29%\
2016 ‘
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Bone properties
Modelling

Bone in general is modelled as a Poroelastic material.
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Bone properties
Modelling

Bone in general is modelled as a Poroelastic material.
Think of this as a sponge filled with water
Only that the sponge is closed so that no water escapes!

We've seen that o = E¢ for elastic materials

For poroelastic materials, we include a term that is prdp’ortiohal
to the pressure of the fluid 6 A

o+ Ap = Fe

Where p is the fluid pressure, and A is called the Biot coefficient
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:
Kd

A=11—-—
Km
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Where K@ is the Bulk modulus of the drained elastic material,
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Their relationship is: i’
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:

Kd
A=|1-—
Km

Where K@ is the Bulk modulus of the drained elastic material,
and K™ is the Bulk modulus of the matrix elastic material.»
Their relationship is: i’

pK™
Kd=K™— o
1—- —
m ( 4 m)
K™+ (3G
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:
Kd

A=11—-—
Km

Where K% is the Bulk modulus of the drained elastic material,

and K™ is the Bulk modulus of the matrix elastic materlal
Their relationship is: ’

Km
Ké=Km— ¢

Km
K™+ (3G™)
¢ being the porosity of the material
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:

Kd

Where K@ is the Bulk modulus of the drained elastic material,
and K™ is the Bulk modulus of the matrix elastic materlal
Their relationship is: ’

Km
Ké=Km— ¢

S
Kt (367
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:

Kd

Where K% is the Bulk modulus of the drained elastic material,

and K™ is the Bulk modulus of the matrix elastic material.
Their relationship is: ’

d __ m o Cme
Ki=K >

T Km+ (36m)

¢ being the porosity of the material, and G™ being the Shea"""‘ 9

modulus of the matrix elastic material, given by:
G? I 15(1 — v™)¢
Gm 7 — bym
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Time to breath in
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Time to breath in

Breath in

Breath out
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Bone properties
Modelling poroelasticity

The idea is that we measure K™ and G™ after we remove the
fluid from the porous material
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Bone properties
Modelling poroelasticity

The idea is that we measure K™ and G™ after we remove the
fluid from the porous material, and then we calculate an effective
stiffness based on some parameters e.g. porosity

Then we work as we know. (i.e. Finite Elements) g

This approach assumes that the material is elastic, we| @re
therefore in a linear region of the stress-strain reIatlonshlp ‘
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Bone properties

Material properties

K™ = 14GPa
K% =12GPa
G™ = 5.5GPa
é = 0.05
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Cartilage
Types of cartilage
Cartilage is found primarily between bones, creating either rigid
connections or articulations.
e Fibrous joints
e Cartilaginous joints

e Synovial joints
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Cartilage

Articulated joints
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Cartilage
Chemical Composition
Hyaline cartilage consists by 40% of Type Il collagen.

mainly water and Proteoglycean.
For synovial joints, it is a thin layer (0.5 - 5 mm)

The rest is

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics



Cartilage

Chemical Composition

Hyaline cartilage consists by 40% of Type Il collagen. The rest is
mainly water and Proteoglycean.
For synovial joints, it is a thin layer (0.5 - 5 mm)

Superficial Zone

Giging surface

Transitional Zone

Deep Zone

TIDEMARK
Subchondral Bone
¢ Cancellous Bone
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Cartilage

Permeability

A very important aspect of cartilage modelling is permeability
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Cartilage

Permeability

A very important aspect of cartilage modelling is permeability

Permeability

The property of a porous material that describes the ability of a
fluid to flow through the material.

Contrary to bone modelling, cartilage modelling takes into
consideration not just fluid compression, but also flow
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Cartilage

Permeability

A very important aspect of cartilage modelling is permeability

Permeability

The property of a porous material that describes the ability of a
fluid to flow through the material.

Contrary to bone modelling, cartilage modelling takes into
consideration not just fluid compression, but also flow
This is a non-linear model
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Cartilage
Modelling

Cartilage is often modelled as a hyperelastic material.
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Cartilage
Modelling

Cartilage is often modelled as a hyperelastic material.

Axial engineering stress (o) (MPa)

Tassos Natsakis

Uniaxial stretch with K=2180 GPa
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Cartilage

Modelling
Cartilage is often modelled as a hyperelastic material.

GPa

Uniaxial stretch with K=2180

= Neo-Hookean: G = 3.100 MPa

~—Neo-Hookean: .480 MPa
- - - Mooney-Rivlin: C, = 1.030 MPa, C, = 0.114 MPa

Yeoh: C‘ =1.202 MPa, CZ =-0.057 MPa, (.73 =0.004 MPa|

Axial engineering stress (o) (MPa)

iy

Gent: G =2.290 MPa, J, =30

* Uniaxial Tension Expt.

“Zfoo  -50 0 50 100 150 200 250 300 350 400
Axial engineering strain (%)

More specifically a Mooney-Rivlin material
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Tendons and ligaments

Functionality
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Tendons and ligaments

Functionality

Tendons

Fibrous connective tissue connecting muscles to bones. They
help translate muscle force production into bone movement.
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Tendons and ligaments

Functionality

Tendons

Fibrous connective tissue connecting muscles to bones. They
help translate muscle force production into bone movement.

Ligaments

Fibrous connective tissue connecting bones to bones. They help
keep bones together, restricting some degrees of freedom in
articulations.

4 . 4 | b
A N | R &
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Tendons and ligaments

Functionality

Achilles
tendon

Tibia

Anterior inferior
tibiofobular ligament

Posterior
inferior
tibial
ligament

Anterior
talofibular
ligament

Posterior
talofibular
ligament

Calcaneofibular ligament

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics



Tendons and ligaments

Composition

Similar composition, of mainly Type | colagen
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Tendons and ligaments

Composition

Similar composition, of mainly Type | colagen
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Tendons and ligaments
Modelling

Tendons and ligaments are modelled as viscohyperelastic
materials.
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Tendons and ligaments

Modelling
Tendons and ligaments are modelled as viscohyperelastic
materials.
)
)]
@
| -
=
0
strain
24
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Tendons and ligaments

Modelling

Viscous effects
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Tendons and ligaments

Modelling

Viscous effects

load

creep

strain

time
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Tendons and ligaments
Modelling

Viscous effects

A A

° °

[q] o

o o

cree .
P Relaxation

c 2

Ju g K—;
2 % =

time
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Tendons and ligaments

Modelling

Viscous effects

Relaxation

A A
° °
[q] o
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creep
£ 7
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time
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Tendons and ligaments
Modelling

0 %
PR . E\Ey " En b
Fi+ Ey Ei+E, Ei+ Bl
26/
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Tendons and ligaments
Modelling

%

E, =]
0)

o+ o= €+ €
B+ By Ei+FEy, E+FE
E1 € E2 € 26/
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Tendons and ligaments

Relaxation
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Tendons and ligaments

Relaxation
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Tendons and ligaments

Relaxation
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Tendons and ligaments

Relaxation
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Tendons and ligaments

Relaxation
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Tendons and ligaments
Modelling

How do we identify E(epsilon) and n?
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Tendons and ligaments
Modelling

How do we identify E(epsilon) and n?

a

From Chao Wan et al. (2015)
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Tendons and ligaments
Modelling

How do we identify E(epsilon) and 7?
a b

From Chao Wan et al. (2015)

Good news: We are mainly interested in axial loading, since thi's‘
is physiological
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Cardiovascular system

Description

from heart Basal lamina toheart
Erythrocyte ; Lumen
,_,I.“-"'men (red blocd cell) 'Perlcyte e

Valve

Endothelium.___
o

Internal Endothelium

Smooth elastic lamina Basement
muscle | membrane Smoaoth
Basement Endothelium iy muscle
External membrane M
elastic lamina Capll!anes 3 B Adventitia
Adventitia

cre

055-5€

arteriole
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Cardiovascular system

Arteries and Veins

An artery A vein

A capillary

Thick o"uter Thin outer wall
wal
Large lumen
Small lumen Intima has valves
Thick media Thin media
(smooth muscle)

Very small Wall is a single
lumen layer of cells
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Blood vessels

Stress analysis
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Blood vessels

Stress analysis
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Blood vessels

Stress analysis
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Blood vessels

Mechanical properties

Visco
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Blood vessels

Mechanical properties

Viscohyperelastic
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Blood vessels

Mechanical properties

Viscohyperelastic, anisotropic
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Blood vessels

Mechanical properties

Viscohyperelastic, anisotropic, composite.

H2

Ex

Eg M3
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Blood vessels

Mechanical properties
Viscohyperelastic, anisotropic, composite.

K2 Ha

Ex

Eg M3

And it exhibits residual stresses!
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Blood vessels

Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics



Blood vessels

Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.
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Blood vessels

Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.
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Blood vessels

Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.

x
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Blood vessels

Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.
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Coming up next

Fluid dynamics in biomechanics
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Questions?
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