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Agenda
• Bones
• Cartilage
• Tendons and ligaments
• Blood vessels
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Bone morphology
Types of bones
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Bone morphology
Bone is a living tissue

https://www.youtube.com/watch?v=0dV1Bwe2v6c
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Bone morphology
Bone structure
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Composition of long bones

Basic structure is the osteon
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Composition of long bones
Osteons

Osteons are like tree trunks
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Bone morphology
Types of bone structure

https://www.youtube.com/watch?v=inqWoakkiTc
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Composition of long bones
Fluids

In the porosity of the bone, there is fluid and bone marrow.
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Bone properties
Bone models

At what level do we model our bones?

It depends on what we want to study

Verbruggen et. al
2016

Torres et. al 2016
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Bone properties
Modelling

Bone in general is modelled as a Poroelastic material.

Think of this as a sponge filled with water
Only that the sponge is closed so that no water escapes!

We’ve seen that σ = Eε for elastic materials

For poroelastic materials, we include a term that is proportional
to the pressure of the fluid

σ + Ap = Eε

Where p is the fluid pressure, and A is called the Biot coefficient
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Bone properties
Modelling poroelasticity

For an isotropic material, The Biot coefficient is equal to:

A =
1 − Kd

Km



Where Kd is the Bulk modulus of the drained elastic material,
and Km is the Bulk modulus of the matrix elastic material.
Their relationship is:
Kd = Km − φKm

1 − Km

Km + (4
3Gm)

φ being the porosity of the material, and Gm being the Shear
modulus of the matrix elastic material, given by:
Gd

Gm
= 1 − 15(1 − νm)φ

7 − 5νm
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Time to breath in

Breath in

Breath out
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Bone properties
Modelling poroelasticity

The idea is that we measure Km and Gm after we remove the
fluid from the porous material

, and then we calculate an effective
stiffness based on some parameters e.g. porosity
Then we work as we know. (i.e. Finite Elements)

This approach assumes that the material is elastic, we are
therefore in a linear region of the stress-strain relationship
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Bone properties
Material properties

Km = 14GPa
Kd = 12GPa
Gm = 5.5GPa
φ = 0.05
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Cartilage
Types of cartilage

Cartilage is found primarily between bones, creating either rigid
connections or articulations.
• Fibrous joints
• Cartilaginous joints
• Synovial joints
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Cartilage
Articulated joints

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 17/35
17/35



Cartilage
Chemical Composition

Hyaline cartilage consists by 40% of Type II collagen. The rest is
mainly water and Proteoglycean.
For synovial joints, it is a thin layer (0.5 - 5 mm)
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Cartilage
Permeability

A very important aspect of cartilage modelling is permeability

Permeability
The property of a porous material that describes the ability of a
fluid to flow through the material.

Contrary to bone modelling, cartilage modelling takes into
consideration not just fluid compression, but also flow
This is a non-linear model
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Cartilage
Modelling

Cartilage is often modelled as a hyperelastic material.

More specifically a Mooney-Rivlin material
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Tendons and ligaments
Functionality

Tendons
Fibrous connective tissue connecting muscles to bones. They
help translate muscle force production into bone movement.

Ligaments
Fibrous connective tissue connecting bones to bones. They help
keep bones together, restricting some degrees of freedom in
articulations.
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Tendons and ligaments
Functionality
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Tendons and ligaments
Composition

Similar composition, of mainly Type I colagen
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Tendons and ligaments
Modelling

Tendons and ligaments are modelled as viscohyperelastic
materials.
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Tendons and ligaments
Modelling

Viscous effects
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Tendons and ligaments
Modelling

σ+ η

E1 + E2
σ̇ = E1E2

E1 + E2
ε+ E1η

E1 + E2
ε̇

E1(ε), E2(ε)
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Tendons and ligaments
Relaxation
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Tendons and ligaments
Modelling

How do we identify E(epsilon) and η?

From Chao Wan et al. (2015)

Good news: We are mainly interested in axial loading, since this
is physiological
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Cardiovascular system
Description
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Cardiovascular system
Arteries and Veins
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Blood vessels
Stress analysis
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Blood vessels
Mechanical properties

Visco

hyperelastic, anisotropic, composite.

And it exhibits residual stresses!
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Blood vessels
Residual stresses

Internal stresses that are present in the vessels, even when there
are no external loads.
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Coming up next

Fluid dynamics in biomechanics
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Questions?
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