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Agenda

• Types of wheels and wheeled robots
• Moving around
• Kinematics, modeling
• Navigation, planning
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Why wheeled robots?

Why are wheeled robots useful?
Provide some examples of applications
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Wheels
Types of wheels

• Fixed wheel
• Centered wheel
• Off-centered wheel
• Omni wheel
• Mecanum wheel
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Wheels
Mecanum wheels
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Wheeled robots
Wheel configuration

Wheeled robots are categorized based on the type of wheels and configurations that
they use.

• By-wheel
• Tricycle
• Four wheel
• Omnidirectional
• etc. etc.
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Wheeled robots
Comparison to other types

Kinematics

Description of robot pose in a inertial frame

Pose
Position
Orientation
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Kinematics
Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a circular motion, this
point is fixed, but for a more complex motion it is constantly moving.

Where is the ICR for straight motion?
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Wheeled robots
Differential drive

The differential drive is implemented:
• Two driving wheels
• Each can rotate independently
• Need for a third balancing point (usually a roller-ball)
• Sensitive to relative velocity of the two wheels
• No sliding!
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Differential drive
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Differential drive
Kinematics modeling

Definitions:

Ω: Angular velocity of the robot
ωi: Angular velocity of wheel i
U : Linear velocity of the robot
ui: Linear velocity of wheel i
r: nominal radius of each wheel
R: Instantaneous Curvature Radius

How many degrees of freedom?
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Differential drive
Kinematics modeling

Pose of the robot

P =

x
y
θ


Control input

U =
[
U
Ω

]

or U =
[

ωL

ωR

]

If we want to follow a specific trajectory (i.e. a specific R), the wheels must move in
such rate so they rotate around the ICR with the same angular velocity
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Differential drive
Forward kinematics modeling

Ω = uR

R + L
2

= uL

R − L
2

R = L

2
uR + uL

uR − uL

System of two equations with two
unknowns

We determine either ωL and ωR, or Ω and
U
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Differential drive
Forward kinematics modeling

We can observe:

U = uR + uL

2 = (ωR + ωL)r
2

Knowing that:

R = L

2
uR + uL

uR − uL
and:

U = ΩR

Ω = UR − UL

L
= (ωR − ωL)r

L

What happens when uR = uL or uR = −uL?
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Differential drive
Forward kinematics modeling

Kinematics model in the robot frame

[
U
Ω

]
=


r

2
r

2
r

L

−r

L

[ωR

ωL

]
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Differential drive
Inverse kinematics modeling

How do we define the inverse kinematics?

uR = Ω(R + L
2 ) = U(1 + L

2R)
uL = Ω(R − L

2 ) = U(1 − L
2R)

Where:
uR = rωR

uL = rωL

Therefore:
ωR = Ω

R + L
2

r
= U

1 + L
2R

r

ωL = Ω
R − L

2
r

= U
1 − L

2R

r
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Differential drive
Kinematics modeling

Kinematics model in the world frame

ẋ
ẏ

θ̇

 =

cosθ 0
sinθ 0

0 1

[U
Ω

]

How do we calculate velocity in world
frame with respect to ωi?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 17/56
17/56



Differential drive
Kinematics modeling

Kinematics model in the world frame

ẋ
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Tricycle
Description

A wheeled robot with three wheels:
• Two fixed wheels with the same axis
• The two wheels can move independently
• One wheel that steers and pushes the robot
• The third wheel is usually between the other two with an offset
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Tricycle
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Tricycle
Kinematics

We control the location of the ICR by changing the steering angle α, and the velocity,
by changing the wheel velocity ωw
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Tricycle
Forward kinematics model

If r is the steering wheel radius, then:

uw = ωwr
R = d ∗ tan(π

2 − α)

The angular velocity of the robot relative to
the base frame:

Ω = uw√
d2 + R2

Ω = uw

d
sin(α)
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Tricycle
Forward kinematics model

Kinematics model in the robot body frame:

U = uwcos(α)

Ω = uw

d
sin(α)
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Tricycle
Forward kinematics model

Kinematics model in the world body frame:

ẋ = uwcos(α) cos(θ)

ẏ = uwcos(α) sin(θ)

θ̇ = ω = uw

d
sin(α)

What about the inverse?
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Tricycle
Inverse kinematics model

α = atan( θ̇dsinθ

ẏ
)

uw = ẏ

cos(α)sin(θ)
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Four wheels
Description

Another type of wheeled robot, is with four wheels. The two front are transmitting the
power and are steered, while the back ones are fixed wheels
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Four wheels
Ackerman drive

For this to work, the steering of the two wheels must be coordinated:

α > β: when turning left
β > α: when turning right
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Four wheels
Ackerman drive

cot(α) =
R − L

2
d

cot(β) =
R + L

2
d

Therefore:
cot(β) − cot(α) = L

d

What happens when α = β = 0?

What is the relationship between angular velocities ωL and ωR?
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Four wheels
Ackerman and tricycle

We can describe the ackerman drive kinematics, the same way as for the tricycle, if we
consider a virtual fifth wheel between the two front ones
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Four wheels
Ackerman drive

We can easily calculate the equivalent virtual angle γ

cot(γ) = cot(α) + L

2d

cot(γ) = cot(β) − L

2d

The kinematics models then are the same
as for a tricycle with steering angle γ
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Four wheels
Skid steer drive

The skid steer drive consists of four individually driven wheels, all with a fixed direction

What is the issue with this design?
Two different ICR for the robot!
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Skid steer drive
Issues

Figure: From: Learning of skid-steered kinematic and dynamic models for motion planning,
Ordonez et. al.
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Skid steer drive
Modelling

We assume a differential drive model:[
U
Ω

]
=


r

2
r

2
r

L

−r

L

[ωR

ωL

]

We add one more dimension for lateral movement (slip, ul)
And we consider some disturbances on each direction

Uf

Ul

Ω

 =


r

2
r

2
0 0
r

L

−r

L


[
ωR

ωL

]
+

δuf

δul

δω


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Skid steer drive
Modelling slipage

There are different ways to model these disturbances:

δuf = α11uc + α12ωc + α13ucωc

δul = α21uc + α22ωc + α23ucωc

δω = α31uc + α32ωc + α33ucωc

or:δuf

δul

δω

 = A

 uc

ωc

ucωc


What does the matrix A depend on?
How do we calculate it?
What do we do when we cannot rely on it?
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Inertial Measurement Unit
IMU

When we cannot rely on characterising matrix A, we
need external sensors for feedback.

IMUs provide information on acceleration, rotational
rate, and sometimes magnetic direction

Figure: Inertial Measurement Unit of
the apollo missions

Figure: Integrated IMU
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Basic control

◦ − C P
setpoint e action response

Let’s fill in the blanks

◦ −
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Dynamic modelling
Differential drive

Generalised coordinates?

Euler-Lagrange?
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Mobile robots
Motion planning

Why do we need planning?

• The world is full of obstacles
• We want to find the most efficient way
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Mobile robots
Motion planning

Input
• Geometric description of robot
• Geometric description of the environment
• Initial position and goal

Output
A path from the initial position
until the goal
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Mobile robots
Motion planning methods

Roadmap approaches:
Reduce all the possible paths to a subset of
them

Cell decomposition:
Account for all of the free space

Potential fields:
Local control strategies, optimality

Bug algorithms:
Limited knowledge of environment
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Motion planning
Roadmap approaches

We construct by drawing lines of ’sight’ from the initial position and target to all their
’visible’ vertices.
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Motion planning
Roadmap approaches

We then do the same for all vertices

These are the possible paths for our robot. By searching, we can find the shortest ones.
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Motion planning
Roadmap approaches

Do you see any drawback with this technique?

What do we do here?
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Motion planning
Voronoi diagrams

A Voronoi diagram is a partitioning of a plane so that different areas are the closest to
a specific point.
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Motion planning
Voronoi diagrams

We use a very similar approach for constructing lines that are equally appart from
obstacles

This technique can be used for curved surfaces, and it also generates clearence for the
robot
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Motion planning
Voronoi diagrams

There are different metrics for defining the distance:

L1 metric:

(x, y) : |x| + |y| = const

L2 metric:

(x, y) : x2 + y2 = const
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Motion planning
Voronoi diagrams

Different metrics, result in different paths
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Motion planning
Cell decomposition

We decompose the available space into cells, and we create a connectivity graph, which
helps us identify possible paths. There are different ways of performing the
decomposition.
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Motion planning
Cell decomposition
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Motion planning
Cell decomposition

This
guarantees obstacle avoidance, but not optimality.
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Motion planning
Potential field method

We construct a potential function that ’pulls’ our robot towards the goal and is being
’pushed’ by the obstacles. To do this, we need to:

• Generate an attractive potential function centered at the goal
• Generate repulsive potential functions at the edges of the obstacles
• Add the two together to come up with a complex potential function
• The gradient of the total potential is an artificial force that drives the robot. This

ensures optimal path
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Motion planning
Potential field method

Attractive field

Uat = 1
2ξ
∥∥∥q − qgoal

∥∥∥2

The potential is parabolic and centered at
position qgoal
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Motion planning
Potential field method

The potential is reciprocal
with distance ρ, which is the
distance from the edge of the

obstacle.
We want the effect of the
repulsion to wear off after

distance ρ0

Repulsive field

Urep =


1
2η

(
1

ρ(q) − 1
ρ0

)2

, if ρ(q) ≤ ρ0

0, if ρ(q) > ρ0
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Motion planning
Potential field method

When adding the two potentials, we get a complex potential that can guide our robot

Of course, this isn’t a perfect
solution. What do you think are
its limitations?
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Motion planning
Bug 0 algorithm

• Known initial and goal state

• Unknown obstacles
• Follow direction towards goal, stop when encounter an obstacle
• Encircle the obstacle until the point of encounter
• Go to the point closest to the goal
• Repeat until reaching the goal
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Motion planning
Bug 1 algorithm

• Known initial and goal state

• Unknown obstacles
• Follow direction towards goal, stop when encounter an obstacle
• Encircle the obstacle until we reach again the line of sight with the goal
• Repeat until reaching the goal
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Questions?
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