
Robot Velocity
We have the need for speed
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Agenda

• Background
• Linear and angular velocity
• The Jacobian
• Inverting the Jacobian - Singularities
• Velocity eclipse
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Recap
What do we know already?

P0 = R1
0 ∗ P1
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Recap
What we know already?

Definition
A transformation matrix that calculates the pose of the robot’s
end effector in terms of the joint coordinates q1, q2, . . . , qn


XX YX ZX Px

XY YY ZY Py

XZ YZ ZZ Pz

0 0 0 1


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Robot velocity
Background

A robot is a mechanism which consists of joints and links.

By controlling the position of the joints, we can control the
position of the end-effector.

Can we do this for velocities as well?
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Robot velocity
Background

We define a matrix called the ’Jacobian’ that shows us how can
we calculate the end-effector velocity if we know the joint
velocities

ξ = Jq̇
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Robot velocity
The Jacobian



ẋ
ẏ
ż
ωx

ωy

ωz


= ξ = Jq̇ = J


q̇1
q̇2
...

q̇n



By vector ξ we denote a vector that contains 6 velocities, 3 linear
and 3 angular. By vector q̇ we denote a vector containing all the
n joint velocities.

What is the size of the Jacobian matrix J?
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Robot velocity
The Jacobian

The Jacobian is a matrix of 6 × n (six rows and n columns).
The first three rows, related to the linear velocities u, the last
three to the angular velocities ω.

[
u
ω

]
=

[
Ju

Jω

]
q̇
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Linear and angular velocity
What is the difference?

Each of the robot segments can be moving with a linear, angular
velocity, or a combination of the two.
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Linear and angular velocity
What is the difference?

Each of the robot segments can be moving with a linear, angular
or a complex velocity.
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Linear and angular velocity
What is the difference?
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What is linear velocity
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What is linear velocity
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What is angular velocity
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What is angular velocity
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Defining the Jacobian
Angular velocities

We are looking for a relationship between joint velocities and
angular velocity of the end-effector.

ω = Jω q̇

What is the dimension of Jω?
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Defining the Jacobian
Addition of Angular velocities
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Defining the Jacobian
Angular velocities

We can add the angular velocities of each segment to calculate
the angular velocity of the end effector.

ωn
0 = q̇1 + q̇2 + . . . + q̇n

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 16/39
16/39



Defining the Jacobian
Angular velocities

What happens if we have motion in R3?

In the general case, we need to express/transform the angular
velocity of each segment to the base coordinate frame.

ωn
0 = ρ1R

1
0q̇1 + ρ2R

2
0kq̇2 + . . . + ρnRn

0 kq̇n

Where k is the unit coordinate vector (0, 0, 1)T

Rn
0 is the rotation matrix from base to joint n, as calculated by

the DH convention.

And ρi is equal to 1 if joint i is revolute and 0 if joint i is
prismatic. Why?
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Defining the Jacobian
Angular velocities

What is the result of:

Rn
0 k

XX YX ZX

XY YY ZY

XZ YZ ZZ


0
0
1

 =

ZX

ZY

ZZ

 = zn

What does zn represent in DH convention?
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Defining the Jacobian
Angular velocities

We have therefore defined a relationship that shows us how the
joint coordinates q relate to the angular velocity of the
end-effector ω

ω =
[
ρ1z1, ρ2z2, . . . , ρnzn

]
q̇

Therefore, the Jacobian for the angular velocities is:

Jω =
[
ρ1z1, ρ2z2, . . . ρnzn

]
What dimension does it have?
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Defining the Jacobian
Linear velocities

We are looking for a relationship between joint velocities and
linear velocity of the end-effector.

u = Juq̇

What is the dimension of Ju ?
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Defining the Jacobian
Linear velocities

We can visualise that the linear velocity of the end-effector is
equal to the linear velocity of the joint for Prismatic joints.

Jui
= zi

What is zi?
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Defining the Jacobian
Linear velocity of a rotating body

~u = ~ω × ~r
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Defining the Jacobian
What is the cross product?

If we have two vectors a and b with coordinates [ai, a2, a3] and
[b1, b2, b3] respectively then, the cross product is defined as:

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k
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Defining the Jacobian
Linear velocities

For a revolute joint, the column of the linear Jacobian for that
joint is equal to the cross product of the axis of the joint and the
vector connecting the end-effector with the joint

Jui
= zi × (on+1 − oi)
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Defining the Jacobian
Combining angular and linear velocities

We can calculate each column of the Jacobian matrix individually.
Each column represents one joint. If joint i is revolute, then:

Ji =
[
zi × (on+1 − oi)

zi

]

If joint i is prismatic, then:

Ji =
[
zi

0

]
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Defining the Jacobian
Example in R2

q1

l1

q2

l2

R1
0 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1



R2
0 =


c1,2 −s1,2 0 l1c1
s1,2 c1,2 0 l1s1
0 0 1 0
0 0 0 1



R3
0 =


c1,2 −s1,2 0 l2c1,2 + l1c1
s1,2 c1,2 0 l2s1,2 + l1s1
0 0 1 0
0 0 0 1


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Defining the Jacobian
2 link planar manipulator

R1
0 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 R2
0 =


c1,2 −s1,2 0 l1c1
s1,2 c1,2 0 l1s1
0 0 1 0
0 0 0 1
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R3
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

J =
[
z1 × (o3 − o1) z2 × (o3 − o2)

z1 z2

]

where:

o1 =

0
0
0

 , o2 =

l1c1
l1s1
0

 , o3 =

l1c1 + l2c1,2
l1s1 + l2s1,2

0

 , z1 = z2 =

0
0
1


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Defining the Jacobian
2 link planar manipulator

q1

l1

q2

l2

J =



−l1s1 − l2s1,2 −l2s1,2
l1c1 + l2c1,2 l2c1,2

0 0
0 0
0 0
1 1



The Jacobian is a function of joint coordinates!
How do we ’use’ the Jacobian?
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Jacobian
Inverse velocity

We now have a method to define the end-effector velocity
(angular and linear) based on the joint velocities

ξ = Jq̇

Is this useful?

How do we do the opposite (i.e. define the joint velocities for
specific end-effector velocity)?

J−1ξ = q̇
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Jacobian
Inverting the velocity

Is J always inversible?

Conditions for Jacobian inversibility
• The Jacobian must be square
• The rank of the Jacobian must be equal to its size

For achieving any velocity in R3, the Jacobian must be 6 × 6.
What do we need for such a Jacobian?
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Jacobian
The pseudoinverse

In the cases we cannot invert the Jacobian (e.g. we have
redundant joints), we can calculate the pseudoinverse.

For J ∈ Rm×n, if m < n, then (JJT )−1exists.

(JJT )(JJT )−1 = I
J [JT (JJT )−1] = I

JJ+ = I

where:

J+ = JT (JJT )−1

therefore:

q̇ = J+ξ
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Jacobian inverse
2 link planar manipulator

q1

l1

q2

l2

Ju =
[
−l1s1 − l2s1,2 −l2s1,2
l1c1 + l2c1,2 l2c1,2

]

J−1
u = 1

l1l2s2

[
l2c1,2 l2s1,2

−l1c1 − l2c1,2 −l1s1 − l2s1,2

]
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Jacobian inverse
2 link planar manipulator

What happens when q2 = 0?

q1

l1

q2 = 0l2

J−1
u = 1

l1l2s2
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Jacobian
Singularities

The Jacobian is a function of the joint coordinates q, and
therefore it varies for different robot configurations.

In some cases, the Jacobian might lose rank, or might become
non-invertible, or its determinant might become zero (which is
practically the same thing)
In such cases, the robot loses dexterity, or even a degree of
freedom.
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Robot manipulability
Why does this all matter?

The Jacobian allows us to map joint velocities to end-effector
velocities. We have seen that at different configurations, we have
a different map (since J depends on q).

Can we quantify how much dexterity our robot has at different
configurations? (i.e. manipulability?)

hint: yes!
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Robot manipulability
Velocity ellipse

We model our robot as an input-output system (input is joint
velocities, output is end-effector velocities). If we consider unit
inputs, then we have:

qT q = 1

which we can write as:

ξT (JJT )−1ξ = 1

which is the equation of an elipse
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Robot manipulability
Velocity ellipse
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Questions?
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