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Recap
What we saw last week

Trans(X, a) =


1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1



Trans(Y, b) =


1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1



Trans(Z, c) =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1


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Recap
What we saw last week

RotX(θ) =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1



RotY (φ) =


cosφ 0 sinφ 0

0 1 0 0
−sinφ 0 cosφ 0

0 0 0 1



RotZ(ω) =


cosω −sinω 0 0
sinω cosω 0 0

0 0 1 0
0 0 0 1


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Recap
What we saw last week

Multiplication from the left results in transformation according to
the axes of the base coordinate frame.

V
′

O = RotX(θ)VO
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Recap
What we saw last week

Multiplication from the right results in transformation according
to the axes of the transformed coordinate frame.

V
′

O = VORotX(θ)
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Recap
What we saw last week

Sometimes, we know the coordinates of a point in one coordinate
frame, but we need to describe it in a second frame. This is
possible if we know the relative position of the two coordinate
frames

P0 = R1
0P1
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Robotic modeling
Robotic structure

In this course we will mainly talk about stationary articulated
robots
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Links

A link is a structural part of any robot. It is usually stiff and is
modelled as a rigid (non-deformable) part. They can have any
shape, according to the design of the robot.
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Joints
Revolute joints

A revolute joint is a joint that allows motion that changes the
orientation of a segment by rotating around a fixed axis. They
can add one degree of freedom to a robot.
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Joints
Prismatic joints

A prismatic joint is a joint that allows motion that changes the
position of a segment by translating along an axis. They can add
one degree of freedom to a robot.

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 11/34
11/34



Robotic modeling
Degrees of freedom

When talking about degrees of freedom for a robot we refer to
the freedom of the robot to vary independently the position
and orientation of its end-effector in different directions.

E.g. a planar robot with two revolute joints and two links has
two degrees of freedom as it can vary independently the
position of the end-effector in the x and y direction.

q1

L1

q2

L2

This manipulator has two joints and two
degrees of freedom. It can independently
vary the x and y position of the end
effector. It can also change the x position
and orientation of the end effector
independently, but then the y position is
determined (i.e. is not independent).
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Robotic modeling
Degrees of freedom

If we add one more joint, we add another degree of freedom

q1

L1

q2

L2

q3

L3

This manipulator can
independently vary the x and y
position of the end effector,
while also controlling the
orientation (3 degrees of
freedom).

What happens if we add one
more joint?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 13/34
13/34



Robotic modeling
Degrees of freedom

If we add one more joint, we add another degree of freedom

q1

L1

q2

L2

q3

L3

This manipulator can
independently vary the x and y
position of the end effector,
while also controlling the
orientation (3 degrees of
freedom).

What happens if we add one
more joint?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 13/34
13/34



Robotic modeling
Degrees of freedom

If we add one more joint, we add another degree of freedom

q1

L1

q2

L2

q3

L3

This manipulator can
independently vary the x and y
position of the end effector,
while also controlling the
orientation (3 degrees of
freedom).

What happens if we add one
more joint?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 13/34
13/34



Robotic modeling
Work envelope

The combination of links and joints defines the degrees of
freedom to a robot. Besides that, it also defines the work
envelope of the robot.
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Robotic modeling
Work envelope

Even if a robot has a certain number of degrees of freedom, some
of them might be lost in some areas of the work envelope.
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Forward kinematics
Definition

The forward kinematics model (FKM) is a mathematical tool
that allows us to calculate the position and orientation (pose) of
a robot’s point of interest if we know the state of the joints and
the lengths of the links.

In simple words
How do I calculate the pose of the end-effector if I know the joint
angles (coordinates)?
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Forward kinematics
Definition

2

3

1

How do we calculate the pose of the end-effector of this robot?
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Forward kinematics
Definition

We describe the pose of the end-effector using a 4x4
transformation matrix (contains information about position and
orientation).

T =

 3 × 3 3 × 1

1 × 3 1 × 1

 =


trans−

rotation la−
tion

0 0 0 1

 (1)
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Forward kinematics
Calculation

To define the forward kinematics model we perform the following
steps:

• We identify the links and joints of the robot.
• We attach a fixed coordinate frame on the base of the robot.
• We attach a coordinate frame on each link at their joints.
• We attach a coordinate frame at the end-effector.
• We calculate the transformation between each subsequent

coordinate frame.
• We combine the transformations to calculate the overall

transformation from base to end-effector.
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Forward kinematics
Calculation
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Forward kinematics
Static calculation

R1
0 = Trans(Z, 1) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 R2
1 = Trans(Z, 2) =


1 0 0 0
0 1 0 0
0 0 1 2
0 0 0 1


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Forward kinematics
Static calculation

R3
2 = Trans(Y, 3) =


1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

 R4
3 =


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1


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Forward kinematics
Static calculation

R4
0 =R1

0R2
1R3

2R4
3 =


1 0 0 0
0 1 0 3
0 0 1 2
0 0 0 1
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Forward kinematics
Static calculation

R4
0 =


1 0 0 0
0 1 0 3
0 0 1 2
0 0 0 1

 =


trans−

rotation la−
tion

0 0 0 1



Rn
m =


Xx Yx Zx Px

Xy Yy Zy Py

Xz Yz Zz Pz

0 0 0 1


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Forward kinematics
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Forward kinematics
What about other configurations?

q1

l1

l2
q2

l3
q3
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Forward kinematics
Dynamic calculation
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Forward kinematics
Dynamic calculation

R1
0 = Trans(Z, 1)R(X, q1) =
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1



1 0 0 0
0 c1 −s1 0
0 s1 c1 0
0 0 0 1



R2
1 = Trans(Y, l1)R(X, q2) =
1 0 0 0
0 1 0 l1
0 0 1 0
0 0 0 1



1 0 0 0
0 c2 −s2 0
0 s2 c2 0
0 0 0 1


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Forward kinematics
Dynamic calculation

R3
2 = Trans(Y, l2)R(X, q3) =
1 0 0 0
0 1 0 l2
0 0 1 0
0 0 0 1



1 0 0 0
0 c3 −s3 0
0 s3 c3 0
0 0 0 1



R4
3 = Trans(Y, l3) =
1 0 0 0
0 1 0 l3
0 0 1 0
0 0 0 1



R4
0 = R1

0R2
1R3

2R4
3
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Forward kinematics
Dynamic calculation

R4
0 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1


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Forward kinematics
Dynamic calculation

R4
0 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1


Forward kinematics
The FKM is a transformation matrix, a function of the joint
positions and link lengths. If we know these variables, we can
calculate the position and orientation of the end effector (or any
other point).
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Forward kinematics
Food for thought

Why do we multiply from the right each transformation?

Could we figure out how to multiply from the left?
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Forward kinematics
Example in 3D
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Forward kinematics
Example in 3D
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Questions?
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