Forward kinematics

Joints, links, degrees of freedom
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Recap

What we saw last week
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Recap

What we saw last week

Multiplication from the left results in transformation according to
the axes of the base coordinate frame.

V,, = RotX (0)Vp
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Recap

What we saw last week

Multiplication from the right results in transformation according
to the axes of the transformed coordinate frame.

V,, = VoRotX ()
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Recap

What we saw last week

Sometimes, we know the coordinates of a point in one coordinate
frame, but we need to describe it in a second frame. This is
possible if we know the relative position of the two coordinate
frames
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Robotic modeling
Robotic structure

In this course we will mainly talk about stationary articulated
robots
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Links

A link is a structural part of any robot. It is usually stiff and is
modelled as a rigid (non-deformable) part. They can have any
shape, according to the design of the robot.

Joint 2

End of arm

Ground
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Joints

Revolute joints
A revolute joint is a joint that allows motion that changes the
orientation of a segment by rotating around a fixed axis. They
can add one degree of freedom to a robot.
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Joints

Prismatic joints
A prismatic joint is a joint that allows motion that changes the
position of a segment by translating along an axis. They can add
one degree of freedom to a robot.
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Robotic modeling

Degrees of freedom

When talking about degrees of freedom for a robot we refer to
the freedom of the robot to vary independently the position
and orientation of its end-effector in different directions.
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Robotic modeling

Degrees of freedom

When talking about degrees of freedom for a robot we refer to
the freedom of the robot to vary independently the position
and orientation of its end-effector in different directions.

E.g. a planar robot with two revolute joints and two links has
two degrees of freedom as it can vary independently the
position of the end-effector in the x and y direction.
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Robotic modeling

Degrees of freedom

When talking about degrees of freedom for a robot we refer to
the freedom of the robot to vary independently the position
and orientation of its end-effector in different directions.

E.g. a planar robot with two revolute joints and two links has
two degrees of freedom as it can vary independently the
position of the end-effector in the x and y direction.
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Robotic modeling

Degrees of freedom

When talking about degrees of freedom for a robot we refer to
the freedom of the robot to vary independently the position
and orientation of its end-effector in different directions.

E.g. a planar robot with two revolute joints and two links has
two degrees of freedom as it can vary independently the
position of the end-effector in the x and y direction.

This manipulator has two Jomts and two
degrees of freedom. It can mdep\endent]y
vary the x and y position of the ‘end
effector. It can also change the x;\strt‘Jon
and orientation of the end effector -+ \
independently, but then the y position is *
determined (i.e. is not independent).

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems



Robotic modeling

Degrees of freedom

If we add one more joint, we add another degree of freedom
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Robotic modeling

Degrees of freedom

If we add one more joint, we add another degree of freedom

This manipulator can
independently vary the x and y
position of the end effector,
while also controllmg the
orientation (3 degrees»‘of
freedom).
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Robotic modeling

Degrees of freedom

If we add one more joint, we add another degree of freedom

This manipulator can
independently vary the x and y
position of the end effector,
while also controllmg the
orientation (3 degrees»‘of
freedom). A

more joint?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems



Robotic modeling

Work envelope
The combination of links and joints defines the degrees of
freedom to a robot. Besides that, it also defines the work
envelope of the robot.

Cartesian Articulated
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Robotic modeling

Work envelope

Even if a robot has a certain number of degrees of freedom, some
of them might be lost in some areas of the work envelope.
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Robotic modeling

Work envelope

Even if a robot has a certain number of degrees of freedom, some
of them might be lost in some areas of the work envelope.

17777777
11777777
117177777
77777777

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems



Robotic modeling

Work envelope

Even if a robot has a certain number of degrees of freedom, some
of them might be lost in some areas of the work envelope.
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Forward kinematics

Definition

The forward kinematics model (FKM) is a mathematical tool
that allows us to calculate the position and orientation (pose) of
a robot's point of interest if we know the state of the joints and
the lengths of the links.
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Forward kinematics

Definition

The forward kinematics model (FKM) is a mathematical tool
that allows us to calculate the position and orientation (pose) of
a robot's point of interest if we know the state of the joints and
the lengths of the links.

In simple words

How do | calculate the pose of the end-effector if | know the joint
angles (coordinates)?
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Forward kinematics

Definition
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How do we calculate the pose of the end-effector of this robot?
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Forward kinematics

Definition

We describe the pose of the end-effector using a 4x4
transformation matrix (contains information about position and
orientation).

3 x 3|3x1 rotation
T = =
1 x 3[1x1 0 0
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

e We identify the links and joints of the robot.
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

e We identify the links and joints of the robot.

e We attach a fixed coordinate frame on the base of the robot.
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

e We identify the links and joints of the robot.

e We attach a fixed coordinate frame on the base of the robot.
e We attach a coordinate frame on each link at their joints.
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

We identify the links and joints of the robot.

We attach a fixed coordinate frame on the base of the robot.

e We attach a coordinate frame on each link at their joints.
e We attach a coordinate frame at the end-effector. Uil
.' Wi “h,
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

We identify the links and joints of the robot.

We attach a fixed coordinate frame on the base of the robot.

We attach a coordinate frame on each link at their joints.

We attach a coordinate frame at the end-effector.

We calculate the transformation between each subs;e‘quent ;
coordinate frame.
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Forward kinematics

Calculation

To define the forward kinematics model we perform the following
steps:

We identify the links and joints of the robot.
We attach a fixed coordinate frame on the base of the robot.
We attach a coordinate frame on each link at their joints.

We attach a coordinate frame at the end-effector.

We calculate the transformation between each subs;e‘quent
coordinate frame.

We combine the transformations to calculate the overaII
transformation from base to end-effector.
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Forward kinematics

Calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation

Ry

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Robot Control Systems




Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

Static calculation
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Forward kinematics

What about other configurations?
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Forward kinematics

Dynamic calculation
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Forward kinematics

Dynamic calculation
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Forward kinematics

Dynamic calculation
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Forward kinematics

Dynamic calculation
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Forward kinematics

Dynamic calculation
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Forward kinematics
The FKM is a transformation matrix, a function of the joint
positions and link lengths. If we know these variables, we can

calculate the position and orientation of the end effector (or any
other point).
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Forward kinematics
Food for thought

Why do we multiply from the right each transformation?
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Forward kinematics
Food for thought

Why do we multiply from the right each transformation?

Could we figure out how to multiply from the left?
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Forward kinematics
Example in 3D

Z
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Forward kinematics
Example in 3D
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Questions?
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